作为一名老师,时常需要编写教案,教案有助于学生理解并掌握系统的知识。如何把教案做到重点突出呢?本页是敬业的小编为大伙儿整编的12篇初一数学上册教案的相关文章,仅供借鉴。
教学目标
1。使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数;
2。会初步应用正负数表示具有相反意义的量;
3。使学生初步了解有理数的意义,并能将给出的有理数进行分类;
4。培养学生逐步树立分类讨论的思想;
5。通过本节课的教学,渗透对立统一的辩证思想。
教学建议
一、重点、难点分析
本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。
正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作—5℃;比海平面高8848米,记作8848米,比海平面低155米记作—155米。由这两个实例很自然地,把大于0的数叫做正数,把加“—”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。
关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
二、教法建议
这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的。从内容上讲,负数比非负数要抽象、难理解。因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数)。这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了。
为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
三、正数与负数概念的理解
1﹒对于正数和负数的概念,不能简单的理解为:带“ ”号的数是正数,带“—”号的数是负数。
2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…—6,—4,—2,0,2,4,6…,不能被2整除的数是奇数,如…—5,—4,—2,1,3,5…
3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。
4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。
四、有理数的分类
整数和分数� 1)正整数、零、负整数�
2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。
3)注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。
4)分数和小数的区别:
分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。
5)到目前为止,所学过的数(除π外)都是有理数。
(一)知识点目标:
1、了解正数和负数是怎样产生的。 2.知道什么是正数和负数。 3.理解数0表示的量的意义。
(二)能力训练目标:
1、体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。
2、会用正、负数表示具有相反意义的量。
(三)情感与价值观要求: 通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:
知道什么是正数和负数,理解数0表示的量的意义。
教学难点:
理解负数,数0表示的量的意义。
教学方法:
师生互动与教师讲解相结合。
教具准备:
地图册(中国地形图)。
教学过程:
引入新课:
1、活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、最好? 内容:老师说出指令: 向前两步,向后两步;
向前一步,向后三步; 向前两步,向后一步; 向前四步,向后两步。 如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出 2、-2、 1、-3、 2、-1、 4、-2等。
[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。
讲授新课:
1、自然数的产生、分数的产生。 2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±、-9的意义。
3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。
举例说明:3、2、
3 1 等是正数(也可加上“十”) -3、-2、
-3 1等是负数。 4、数0既不是正,也不是负数,0是正数和负数的分界。 0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。 5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材p5图)让学生观察地形图上的标注和记录支出、存入信息的
巩固提高:练习:课本p5练习 课时小结:这节课我们学习了哪些知识?你能说一说吗?
课后作业:课本p7习题的第1、2、4、5题。 活动与探究:在一次数学测验中,某班的平均分为85分,把高于平均分的高出部分记为正数。
(1)美美得95分,应记为多少?
(2)多多被记作一12分,他实际得分是多少?
课后反思:
学习目标
1.认识简单的几何体棱柱、圆柱、圆锥、球等,掌握其中的相同之处和不同之处,会对其进行简单分类。
2.认识点、线、面的运动会产生什么几何体。
学习重点
认识一些基本的几何体,认识几何体是什么运动形成的
学习难点
描述几何体的特征,对几何体,进行分类,认识点、线、面的运动能产生什么几何体。
行为提示:创景设疑,帮助学生知道本节课学什么。
行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成。
说明:学生通过观察、分析,掌握棱柱的分类方法,并能用自己的语言描述棱柱与圆柱的相同点与不同点。情景导入生成问题
先阅读教材第2页“想一想”上方的图片内容,并完成书中所提出的问题。
说明学生很容易找出以前学过的几何体以及与笔筒形状类似的物体,有利于学生从直观形象认识上升到抽象理性认识。
归纳结论与笔筒形状类似的几何
【学习目标】
1.回顾、思考本所学的知识及思想方法,并能进行梳理,使所学知识系统化。
2.丰富对平面图形的认识,能有条理地、清晰地阐述自己的观点。
【导学提纲】
梳理本知识:
1. 基本概念
2.位置关系 .
3.相关图形的性质。
(1)线段和直线的有关性质:
(2)余角、补角、对顶角的有关性质:
(3)平行和垂直的有关性质:
4.基本作图。(尺规作图)
(1)作一条线段ab等于线段a;
(2)作 等于 .
5.分类思想。
【反馈矫正】
1.完成本p172页复习题第1、2、3、4、5、7、8题
2.8°44′24″用度表示为_______,110.32°用度、分、秒表示为_______.
3.如果 与 互补, 与 互余,则 与 的关系是( )
a. = b.
c. d. 与 互余
4.在1点与2点之间,时钟的时针与分针成直角的时刻是1时______分。
5.如图,oe是∠aod的平分线,of⊥od,垂足为o,
∠eof=19°,求∠aod的度数。
【迁移拓展】
完成本p172页复习题第9、11、14题
【堂作业】本p172页复习题第6、10题
整式
题2.1 整式时本学期
第 时日期
型新授主备人复备人审核人
学习
目标(1)了解单 项式 及单项式系数、次数的概念;
(2)会准确迅速地确定一个单项式的系数和次数。
重点
难点重点:单项式及单 项式的系数、次数的概念;
准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立
流程师生活动时 间复备标注
一、导入新
回顾:先填空,再请说出你所列式子的运算含义。
1、边长为x的正方形的周长是 。
2、一辆汽车的速度是v千米/小时,行驶t小时所走过的路程为 千米。
3、 如图正方体的表面积为 ,体积为 。
4、设n表示 一个数,则它的'相反数是
看前图,尝试回答3 个问题
在小学,我们学过 用字母表示数。我们 可以用这种方法回答上面的问题。在本还会看到,我们不仅可以用字母 或含有字母的式子表示数和数量关 系,而且还可以将这样的式子进行加减运算。这些内容将为下一一元一次方程的学习打下基 础
二、新授
1、自学第54--55页,回答下列问题
完成思考的4个问题
什么是单项式,单项式的系数,次数?举例说明
归纳小结:数或字母的积的式子叫做单项式,单项式中数字因数叫做单项 式的系数,一个单项式中,所有字母的指数的和叫做这个单 项式的次数。
注意:单项式表示数字与字母相乘时,通常数字写在前面 ;系数、指数为1时,常省略不写。
完成56页练习1
2、自学第55页例题,回答 下列问题
独立完成例题,后订正答案
同一个式子表示的意义是否相同?
归纳小结:用字母表示数后,同一个 式子可以表示不同的含义。
3、完成56页练习2
三、堂达标练习
59页习题1
四、堂小结
1、单项式、单项式系数、单项式次数的概念
2、在找单项式系数、次数 时需注意什么 问题?在写单项式时需注意什么问题?
一、等式的概念和性质
1.等式的概念,用等号“=”来表示相等关系的式子,叫做等式。 在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边。等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则。
2.等式的类型楷体五号
(1)恒等式:无论用什么数值代替等式中的字母,等式总能成立。如:数字算式 .
(2)条件等式:只能用某些数值代替等式中的字母,等式才能成立。方程 需要 才成立。
(3)矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立。如 , .
注意:等式由代数式构成,但不是代数式。代数式没有等号。体五号
3.等式的性质五号
等式的性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。若 ,则 ;
等式的性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式。若 ,则 , .
注意:
(1)在对等式变形过程中,等式两边必须同时进行。即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边。
(2)等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同。
(3)在等式变形中,以下两个性质也经常用到:
①等式具有对称性,即:如果 ,那么 .
②等式具有传递性,即:如果 , ,那么 .黑体小四
二、方程的相关概念黑体小四
1.方程,含有未知数的等式叫作方程。 注意:定义中含有两层含义,即:方程必定是等式,即是用等号连接而成的式子;方程中必定有一个待确定的数即未知的字母。二者缺一不可。楷体五号
2.方程的次和元 方程中未知数的最高次数称为方程的次,方程中不同未知数的个数称为元。楷体五号
3.方程的已知数和未知数楷体五号
已知数:一般是具体的数值,如 中( 的系数是1,是已知数。但可以不说).5和0是已知数,如果方程中的已知数需要用字母表示的话,习惯上有等表示。
未知数:是指要求的数,未知数通常用 、 、 等字母表示。如:关于 、 的方程 中, 、 、 是已知数, 、 是未知数。楷体五号
4.方程的解 使方程左、右两边相等的未知数的值,叫做方程的解。楷体五号
5.解方程 求得方程的解的过程。
注意:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程。
6.方程解的检验楷体要验证某个数是不是一个方程的解,只需将这个数分别代入方程的左边和右边,如果左、右两边数值相等,那么这个数就是方程的解,否则就不是。黑体小四
三、一元一次方程的定义体小四
1.一元一次方程的概念 只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数。楷体五号
2.一元一次方程的形式楷体五号
标准形式: (其中 , , 是已知数)的形式叫一元一次方程的标准形式。
最简形式:方程 ( , , 为已知数)叫一元一次方程的最简形式。
注意:(1)任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证。如方程 是一元一次方程。如果不变形,直接判断就出会现错误。
(2)方程 与方程 是不同的,方程 的解需要分类讨论完成。黑体小四
四、一元一次方程的解法
1.解一元一次方程的一般步骤五号
(1)去分母:在方程的两边都乘以各分母的最小公倍数。 注意:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号。
(2)去括号:一般地,先去小括号,再去中括号,最后去大括号。 注意:不要漏乘括号里的项,不要弄错符号。
(3)移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边。 注意:①移项要变号;②不要丢项。
(4)合并同类项:把方程化成 的形式。 注意:字母和其指数不变。
(5)系数化为1:在方程的两边都除以未知数的系数 ,得到方程的解 . 注意:不要把分子、分母搞颠倒。体五号
2.解一元一次方程常用的方法技巧 解一元一次方程常用的方法技巧有:整体思想、换元法、裂项、拆添项以及运用分式的恒等变形等。
3.关于x的方程 ax b 解的情况 ⑴当a 0时,x ⑵当a ,b 0时,方程有无数多个解 ⑶当a 0,b 0时,方程无解
练习1、等式的概念和性质
1.下列说法不正确的是
a.等式两边都加上一个数或一个等式,所得结果仍是等式。
b.等式两边都乘以一个数,所得结果仍是等式。 c.等式两边都除以一个数,所得结果仍是等式。
d.一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式。
2.根据等式的性质填空。
(1) ,则 ; (2) ,则 ;
(3) ,则 ; (4) ,则 .
练习2、方程的相关概念
1.列各式中,哪些是等式?哪些是代数式,哪些是方程?
① ;② ;③ ;④ ;⑤ ;⑥ ;
⑦ ;⑧ ;⑨ .
2.判断题。
(1)所有的方程一定是等式。
(2)所有的等式一定是方程。
(3) 是方程。
(4) 不是方程。
(5) 不是等式,因为 与 不是相等关系。
(6) 是等式,也是方程。
(7)“某数的3倍与6的差”的含义是 ,它是一个代数式,而不是方程。
练习3、一元一次方程的定义
1.在下列方程中哪些是一元一次方程?哪些不是?说明理由:
(1)3x 5=12; (2) =5; (3)2x y=3; (4)y2 5y-6=0; (5) =2.
2.已知 是关于 的一元一次方程,求 的值。
3.已知方程 是关于x的一元一次方程,则m=_________
4.已知方程 是一元一次方程,则 ; .
练习4、一元一次方程的解与解法
1)一元一次方程的解 一)、根据方程解的具体数值来确定
1.若关于x的方程 的解是 ,则代数式 的值是_________。
2.若 是方程 的一个解,则 .
3.某同学在解方程 ,把 处的数字看错了,解得 ,该同学把 看成了 .
二)、根据方程解的个数情况来确定楷体五号
1.关于 的方程 ,分别求 , 为何值时,原方程:
(1)有唯一解;(2)有无数多解;(3)无解。
2.已知关于 的方程 有无数多个解,那么 , .
3.已知方程 有两个不同的解,试求 的值。
三)、根据方程定解的情况来确定楷体五号
1.若 , 为定值,关于 的一元一次方程 ,无论 为何值时,它的解总是 ,求 和 的值。
2.当 取符合 的任意数时,式子 的值都是一个定值,其中 ,求 , 的值。
五号
四)、根据方程整数解的情况来确定楷体五号
1.已知 为整数,关于 的方程 的解为正整数,求 的值。
2.已知关于 的方程 有整数解,那么满足条件的所有整数 =
3.若方程 有一个正整数解,则 取的最小正数是多少?并求出相应方程的解。
号
五)、根据方程公共解的情况来确定
1.若 和 是关于 的'同解方程,则 的值是 .
2.已知关于 的方程 ,和方程 有相同的解,求这个相同的解。
3.已知关于 的方程 仅有正整数解,并且和关于 的方程 是同解方程。若 , ,求出这个方程可能的解。
2)一元一次方程的解法 一)、基本类型的一元一次方程的解法
1.解方程:(1) (2) - =1- (3)
二)、分式中含有小数的一元一次方程的解法楷体五号
1.解方程:(1) (2)
(3) (4)
三)、含有多层括号的一元一次方程的解法体五号
1.解方程:(1) (2) (3)
四)、一元一次方程的技巧解法
1.解方程:(1) (2)
(3) (4)
一、填空题。(每小题3分,共24分)
1.已知4x2n-5 5=0是关于x的一元一次方程,则n=_______.
2.若x=-1是方程2x-3a=7的解,则a=_______.
3.当x=______时,代数式 x-1和 的值互为相反数。
4.已知x的 与x的3倍的和比x的2倍少6,列出方程为________.
5.在方程4x 3y=1中,用x的代数式表示y,则y=________.
6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元。
7.已知三个连续的偶数的和为60,则这三个数是________.
8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成。
二、选择题。(每小题3分,共30分)
9.方程2m x=1和3x-1=2x 1有相同的解,则m的值为。
a.0 b.1 c.-2 d.-
10.方程│3x│=18的解的情况是。
a.有一个解是6 b.有两个解,是±6
c.无解 d.有无数个解
11.若方程2ax-3=5x b无解,则a,b应满足。
a.a≠ ,b≠3 b.a= ,b=-3
c.a≠ ,b=-3 d.a= ,b≠-3
12.解方程 时,把分母化为整数,得。
a、 b、 c、 d、
13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于。
a.10分 b.15分 c.20分 d.30分
14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额。
a.增加10% b.减少10% c.不增也不减 d.减少1%
15.在梯形面积公式s= (a b)h中,已知h=6厘米,a=3厘米,s=24平方厘米,则b=( )厘米。
a.1 b.5 c.3 d.4
16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是。
a.从甲组调12人去乙组 b.从乙组调4人去甲组
c.从乙组调12人去甲组 d.从甲组调12人去乙组,或从乙组调4人去甲组
17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了场。
a.3 b.4 c.5 d.6
18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?
a.3个 b.4个 c.5个 d.6个
三、解答题。(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)
19.解方程:2(x-3) 3(2x-1)=5(x 3)
20.解方程:
21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明。已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片。
22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数。
23.据了解,火车票价按“ ”的方法来确定。已知a站至h站总里程数为1500千米,全程参考价为180元。下表是沿途各站至h站的里程数:
车站名 a b c d e f g h
各站至h站
里程数(米) 1500 1130 910 622 402 219 72 0
例如:要确定从b站至e站火车票价,其票价为 =87.36≈87(元).
(1)求a站至f站的火车票价(结果精确到1元).
(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了。请问王大妈是在哪一站下的车(要求写出解答过程).
24.某公园的门票价格规定如下表:
购票人数 1~50人 51~100人 100人以上
票 价 5元 4.5元 4元
某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元。
(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?
(2)两班各有多少名学生?(提示:本题应分情况讨论)
一、教学目标:
1、知识目标:
使学生理解同类项的概念和合并同类项的意义,学会合并同类项。
2、能力目标:
培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想。
3、情感目标:
借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动。培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神。
二、教学重点、难点:
重点:同类项的概念和合并同类项的法则
难点:合并同类项
三、教学过程:
(一)情景导入:
1、观察下面的图片,并将这些图片分类:
你是依据什么来进行分类的呢?
生活中,我
2、对下列水果进行分类:
(二)新知探究1:
1、对下列八个单项式进行分类:
a,6x2,5,cd,-1,2x2,4a,-2cd
这些被归为同一类的项有什么相同的特征?
2、揭示同类项的概念。
同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。另外,所有的常数项都是同类项。
《3.4合并同类项》同步练习
1、已知代数式2a3bn 1与-3am-2b2是同类项,则2m 3n=________.
2、若-4xay x2yb=-3x2y,则a b=_______.
3、下面运算正确的是( )
a.3a 2b=5ab b.3a2b-3ba2=0
c.3x2 2x3=5x5 d.3y2-2y2=1
4、已知一个多项式与3x2 9x的和等于3x2 4x-1,则这个多项式是( )
a.-5x-1 b.5x 1
c.-13x-1 d.13x 1
《3.4合并同类项》测试
1、下列说法中,正确的是( )
a.字母相同的项是同类项
b.指数相同的项是同类项
c.次数相同的项是同类项
d.只有系数不同的项是同类项
说明:把互为相反数的一对数结合起来相加,可以使运算简化,这种方法是使用加法交换律和加法结合律。
总结:在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有相反数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加。
(三)应用迁移,巩固提高
【例3】 利用有理数的加法运算律计算,使运算简便。
(1)( 9) (-7) ( 10) (-3) (-9)
(2)( 0.36) (-7.4) ( 0.03) (-0.6) ( 0.64)
(3)( 1) (-2) ( 3) (-4) … ( 2003) (-2004)
【例4】某出租司机某天下午营运全是在东西走向的人民大道上进行的,如果规定向 灵活运用加法的运算律会使运算简便。一般情况下,我们将互为相反数的数相结合,同分母的分数相结合,能凑整数的数相结合,正数负数分别相加,从而使计算简便。
(五)课堂跟踪反馈
夯实基础
1、运用加法的运算律计算( 6) (-18) ( 4) (-6.8) 18 (-3.2)最适当的是( )
a.[( 6) ( 4) 18] [(-18) (-6.8) (-3.2)]
b.[( 6) (-6.8) ( 4)] [(-18) 18 (-3.2)]
c.[( 6) (-18)] [( 4) (-6.8)] [18 (-3.2)]
d.[( 6) ( 4)] [(-3.2) (-6.8)] [(-18) 18)]
2、计算:(-2) 4 (-6) 8 … (-98) 100.
【教学目标】
1、经历探索去括号法则的过程,了解去括号法则的依据。
2、会用去括号进行简单的计算。
3、经历观察、归纳等教学活动,培养学生合作精神和探究问题的能力。
【重、难点】
理解去括号法则,熟练运用去括号法则。
【教学过程】
一、情境创设
在假期的勤工俭学活动中,小亮从报社以每份0。4元的价格购进a份报纸,以每份0。5元的价格卖出b份(b≤a)报纸,剩余的报纸以每份0。2元的价格退回报社,小亮赢利多少元?
思考:如何合并你算出的这个代数式中的同类项?
同步测试
1、七年级(1)班男生有a人,女生比男生的2倍少25人,男生比女生的人数多。试回答下列问题。(用代数式来表示,能化简的化简)
(1)女生有多少人?
(2)男生比女生多多少人?
(3)全班共有多少人?
测试
【拓展提优】
14、如果a是三次多项式,b是三次多项式,那么a b一定是()
a、六次多项式
b、次数不高于3的整式
c、三次多项式
d、次数不低于3的整式
15、多项式(xyz2—4yz—1) (—3xy z2xy—3)—(2xyz2 xy)的值()
a、与x、y、z均有关
b、与x有关,而与y、z无关
c、与x、y有关,而与z无关
d、与x、y、z均无关
16、已知a=20xxx 20xx,b=20xxx 20xx,c=20xxx 20xx,那么(a—b)2 (b—c)2 (c—a)2的值等于()
a、4 b、6 c、8 d、10
17、当x=1时,代数式mx3 nx 1的值为20xx,则当x=—1时,代数式mx3 nx 1的值为()
a、—20xx b、—20xx c、—20xx d、—20xx
18、若m=3a2—2ab—4b2,n=4a2 5ab—b2,则8a2—13ab—15b2等于()
a、2m—n b、3m—2n c、4m—n d、2m—3n
19、把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示。则图②中两块阴影部分的周长和是()
a、4m cm b、4n cm
c、2(m n)cm d、4(m—n)cm
【学习目标】
1.使学生能说出相反数的意义
2.使学生能求出已知数的相反数
3.使学生能根据相反数的意思进行化简
【学习过程】
【情景创设】
回忆上节课的情境,小明从学校出发沿东西大街走了0.5千米,在数轴上表示出他的位置。点a,点b即是小明到达的位置。
观察a,b两点位置及共到原点的距离,你有什么发现吗?
《数轴》专题练习
1.(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:
a队:-50分;b队:150分;c队:-300分;d队:0分;e队:100分。
(1)将5个队按由低分到高分的顺序排序;
(2)把每个队的得分标在数轴上,并标上代表该队的字母;
(3)从数轴上看a队与b队相差多少分?c队与e队呢?
《2.4数轴》同步测试
1下列说法中错误的是( )
a.一个正数的绝对值一定是正数
b.任何数的绝对值都是正数
c.一个负数的绝对值一定是正数
d.任何数的绝对值都不是负数
22017·海安县期中绝对值大于2且不大于5的整数有________个。
3某检修小组乘坐一辆汽车沿公路检修供电线路,约定前进为正,后退为负,他们从出发到收工返回时,走过的路程记录如下(单位:km): 5,-3, 7,-1,-4, 8,-12.求他们从出发到收工返回时,总共行驶的路程。
教学内容
角的初步认识
第38、39页练习八1、2、3
第三单元
第1课时
教学
目标
1、结合生活情境及操作活动,使学生初步认识角,会判断角,知道角的各部分名称。
2、初步学会用直尺画角。3.培养学生的动手操作能力和团结合作的精神。
教学
准备
教学课件、师生的三角尺、活动角、吸管等
教
学
过
程
教 学 活 动
教 师
学 生
一、创设情景,引入新课
1、 师播放多媒体:把实物抽象成图形,再把角拉出来。
2、 揭示课题。角的初步认识。
二、联系实际感知角
1、 第38页主题图校园一角,引导学生观察三角板、大剪刀、球门的框、球场的角等。
2、 在生活中还有许多这样的例子,投影出示例1
3、 小结:这些物品中都有角。
4、 引导学生寻找生活中的角。
5、 师引导学生创造一个角
三、操作感知,探究新知,认识角的组成部分
(1)师变魔术引出活动角。
边
顶点
边
学生说出所看到的图形名称,并指出各有几个角。
生观察。
生在教室里找角,同桌互相说一说。
生用手中的纸折一个角、用两只铅笔搭一个角……等。
2、生从自己折的角中探索出角的顶点和边。
教
学
过
程
教 师
学 生
(2)出示不同的角,你们能指出这些角的顶点和边吗?
小结:一个角有一个顶点和两条边。
(2)画角
五、巩固练习
1、练习第1题判断。要求学生出2和4为什么不是角的原因。
2、练习第2题,数角。
3、练习第3题,比角的大小。
小结:角的大小与边的长短无关。
6、 出示活动角。
小结:角的。大小与两条边的张开的大下有关。
六、拓展、游戏:
1、 用三根小棒可以摆几个角?有几种摆法?
2、 有一个长方形,用剪刀剪一刀,剪去一个角后,还剩几个角?
七、课后小结
这节课我们认识了什么?你有哪些收获?
1、生探索画角的过程。自学。
2、生说画角过程。
3、观看多媒体画角过程。
4、生再次画角。
用自己喜欢的方法比较两个角的大小。
生玩活动角:慢慢地张开,慢慢地合拢。
学生动手做一做,小组合作,说一说。
总结这节课我们学习了哪些数学知识和数学思想?你能说一说吗?
教师引导学生回忆本节课所学内容,学生回忆交流,教师和学生一起补充完善,使学生更加明晰所学的知识。
教学目的:
1.了解计算器的性能,并会操作和使用;
2.会用计算器求数的平方根;
重点:用计算器进行数的加、减、乘、除、乘方和开方的计算;
难点:乘方和开方运算;
教学过程:
1.计算器的使用介绍(科学计算器)
初一上册数学一单元教案。png
2.用计算器进行加、减、乘、除、乘方、开方运算
例1用计算器求下列各式的值。
(1)(-3.75) (-22.5) (2)51.7(-7.2)
解(1)
初一上册数学一单元教案。png
(-3.75) (-22.5)=-26.25
(2)
初一上册数学一单元教案。png
51.7(-7.2)=-372.24
说明输入数据时,按键顺序与写这个数据的顺序完全相同,但输入负数时,符号转换键要放在数据之后键入。
随堂练习
用计算器求值
1.9.23 10.2 2.(-2.35)×(-0.46)
答案1.37.8 2.1.081
作为一位兢兢业业的人民教师,通常需要用到...
07-30在教学工作者实际的教学活动中,时常要开展...
07-30在教学工作者实际的教学活动中,时常要开展...
07-30作为一位兢兢业业的人民教师,通常需要用到...
07-30